Small-Molecule Inhibitor Leads of Ribosome-Inactivating Proteins Developed Using the Doorstop Approach
نویسندگان
چکیده
Ribosome-inactivating proteins (RIPs) are toxic because they bind to 28S rRNA and depurinate a specific adenine residue from the α-sarcin/ricin loop (SRL), thereby inhibiting protein synthesis. Shiga-like toxins (Stx1 and Stx2), produced by Escherichia coli, are RIPs that cause outbreaks of foodborne diseases with significant morbidity and mortality. Ricin, produced by the castor bean plant, is another RIP lethal to mammals. Currently, no US Food and Drug Administration-approved vaccines nor therapeutics exist to protect against ricin, Shiga-like toxins, or other RIPs. Development of effective small-molecule RIP inhibitors as therapeutics is challenging because strong electrostatic interactions at the RIP•SRL interface make drug-like molecules ineffective in competing with the rRNA for binding to RIPs. Herein, we report small molecules that show up to 20% cell protection against ricin or Stx2 at a drug concentration of 300 nM. These molecules were discovered using the doorstop approach, a new approach to protein•polynucleotide inhibitors that identifies small molecules as doorstops to prevent an active-site residue of an RIP (e.g., Tyr80 of ricin or Tyr77 of Stx2) from adopting an active conformation thereby blocking the function of the protein rather than contenders in the competition for binding to the RIP. This work offers promising leads for developing RIP therapeutics. The results suggest that the doorstop approach might also be applicable in the development of other protein•polynucleotide inhibitors as antiviral agents such as inhibitors of the Z-DNA binding proteins in poxviruses. This work also calls for careful chemical and biological characterization of drug leads obtained from chemical screens to avoid the identification of irrelevant chemical structures and to avoid the interference caused by direct interactions between the chemicals being screened and the luciferase reporter used in screening assays.
منابع مشابه
Optimization of EnBase Fed-Batch Cultivation to Improve Soluble Fraction Ratio of α-Luffin Ribosome Inactivating Protein
Background: The increase of the protein expression via ribosomal manipulation is one of the suggested cellular mechanisms involved in EnBase fed-batch mode of cultivation. However, this system has not been implemented for cytotoxic proteins.Objectives: Here, the expression pattern of α-Luffin, a ribosome inactivation protein (RIP) with an innate toxicity,...
متن کاملP122: Small Molecules as Chemical and Pharmacological Tools for Neuroinflammatory Diseases Treatment (with Emphasis on Multiple Sclerosis)
Multiple Sclerosis (MS) is a neuroinflammatory disease resulting in degeneration of the myelin sheaths and death of oligodendrocytes. So far, several strategies have been introduced to control the disease. Treatment with small molecules is one of the strategies that have recently attracted the attention in the scientific community. These molecules that target epigenetic and other cellular proce...
متن کاملChemical Structure of Retro-2, a Compound That Protects Cells against Ribosome-Inactivating Proteins
Shiga-like toxins and ricin are ribosome-inactivating proteins (RIPs) that are lethal to mammals and pose a global health threat. No clinical vaccines or therapeutics currently exist to protect against these RIPs. Two small molecules (Retro-1 and Retro-2) were discovered with high-throughput screening and reported for their protection of cells against RIPs. Of great significance, Retro-2, repor...
متن کاملCommon Pharmacophore of Structurally Distinct Small-Molecule Inhibitors of Intracellular Retrograde Trafficking of Ribosome Inactivating Proteins
We reported previously (±)-2-(5-methylthiophen-2-yl)-3-phenyl-2,3-dihydroquinazolin-4(1H)-one [(±)-Retro-2(cycl)] as the chemical structure of Retro-2 that showed mouse protection against ricin, a notorious ribosome inactivating protein (RIP). Herein we report our chemical resolution of (±)-Retro-2(cycl), analog synthesis, and cell-based evaluation showing that the two optically pure enantiomer...
متن کاملStructural insights into the interaction of the ribosomal P stalk protein P2 with a type II ribosome-inactivating protein ricin
Ricin is a type II ribosome-inactivating protein (RIP) that depurinates A4324 at the sarcin-ricin loop of 28 S ribosomal RNA (rRNA), thus inactivating the ribosome by preventing elongation factors from binding to the GTPase activation centre. Recent studies have disclosed that the conserved C-terminal domain (CTD) of eukaryotic ribosomal P stalk proteins is involved in the process that RIPs tar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011